Find the regression equation, letting overhead width be the predictor (x) variable. Find the best predicted weight of a seal if the overhead width measured from a photograph is 2.4 cm. Can the prediction be correct? What is wrong with predicting the weight in this case? Use a significance level of 0.05.
Overhead Width (cm)
| 8.4 | 7.8 | 9.4 | 8.8 | 8.2 | 8.9 |
|
---|---|---|---|---|---|---|---|
Weight (kg)
| 178 | 183 | 245 | 193 | 190 | 225 |
Critical Values of the Parson Correlation Coefficient r
n
| α=0.05
| α=0.01
| NOTE: To test H0: p=0 against H1: ρ≠0, reject H0 if the absolute value of r is greater than the critical value in the table.
|
---|---|---|---|
4
| 0.950
| 0.990
| |
5
| 0.878
| 0.959
| |
6
| 0.811
| 0.917
| |
7
| 0.754
| 0.875
| |
8
| 0.707
| 0.834
| |
9
| 0.666
| 0.798
| |
10
| 0.632
| 0.765
| |
11
| 0.602
| 0.735
| |
12
| 0.576
| 0.708
| |
13
| 0.553
| 0.684
| |
14
| 0.532
| 0.661
| |
15
| 0.514
| 0.641
| |
16
| 0.497
| 0.623
| |
17
| 0.482
| 0.606
| |
18
| 0.468
| 0.590
| |
19
| 0.456
| 0.575
| |
20
| 0.444
| 0.561
| |
25
| 0.396
| 0.505
| |
30
| 0.361
| 0.463
| |
35
| 0.335
| 0.430
| |
40
| 0.312
| 0.402
| |
45
| 0.294
| 0.378
| |
50
| 0.279
| 0.361
| |
60
| 0.254
| 0.330
| |
70
| 0.236
| 0.305
| |
80
| 0.220
| 0.286
| |
90
| 0.207
| 0.269
| |
100
| 0.196
| 0.256
| |
n
| α=0.05
| α=0.01
|
The regression equation is
y= -141.0 + 40.0x
(Round to one decimal place as needed.)
Part 2
The best predicted weight for an overhead width of
2.4 cm is ______ kg.
(Round to one decimal place as needed.)
Part 3
Can the prediction be correct? What is wrong with predicting the weight in this case?
A.
The prediction cannot be correct because a negative weight does not make sense and because there is not sufficient evidence of a linear correlation.
B.
The prediction cannot be correct because a negative weight does not make sense. The width in this case is beyond the scope of the available sample data.
C.
The prediction cannot be correct because there is not sufficient evidence of a linear correlation. The width in this case is beyond the scope of the available sample data.
D.
The prediction can be correct. There is nothing wrong with predicting the weight in this case.
sectetur adipiscing elit.
secsectetur adipiscing elit. Nam lacinia pulvinar tor
sectetur adipisci
sectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie consequat,
Unlock access to this and over
10,000 step-by-step explanations
Have an account? Log In
s | s | sectetur | sectetur | sectetur adipi |
sec | sec | sect | sectet | sect |
sec | sec | sect | sectet | secte |
sec | sec | sect | sectetu | secte |
sec | sec | sect | secte | secte |
sec | sec | sect | sectet | sect |
sec | sec | sect | sectet | sect |
sec | sec | sectetur ad | sectetur ad | sectetur adipisc | |
sectetur | sect | sect | sectet | sectetur | sectetu |
sect | sect | sectet | sect | sect | sect |
sectetur adipiscing elit.
sectetur adipiscing elit. Nam lacinia p
sectetur adipiscing elit. Na
sectetur adipiscing elit. Nam lacini
sectetur adipiscing elit. Nam la
sectetur adipiscing elit. Nam lacinia pulvinar tortor nec faci
sectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis
sectetur adipiscingsectetur adipiscing e
sectetur adipiscing elit. Nam lacinia pulvinar tortor nec faci
sectetur adi
sectetur adi
sect
sectetur adipiscin
sectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque dapibus eff
sectetur ad
sectetur adipiscing elit. Nam
sectetur adipiscing elit. Nam
sectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie consequa