Questions & AnswersStatistics and Probability

Find the regression​ equation, letting overhead width be the...

Question
Answered step-by-step
Asked by JudgeYakMaster800 on coursehero.com

Find the regression​ equation, letting overhead width be the...

Find the regression​ equation, letting overhead width be the predictor​ (x) variable. Find the best predicted weight of a seal if the overhead width measured from a photograph is 2.4 cm. Can the prediction be​ correct? What is wrong with predicting the weight in this​ case? Use a significance level of 0.05.

 

Overhead Width​ (cm)

 

8.4

7.89.48.88.28.9

 

 

Weight​ (kg)

 

178

183245193190225 

Critical Values of the Parson Correlation Coefficient r

n

 

α=0.05

 

α=0.01

 

​NOTE: 

To test

H0​:  p=0

against

H1​:  ρ≠​0,

reject H0

if the absolute 

value of r is 

greater than the 

critical value 

in the table.

 

4

 

0.950

 

0.990

 

5

 

0.878

 

0.959

 

6

 

0.811

 

0.917

 

7

 

0.754

 

0.875

 

8

 

0.707

 

0.834

 

9

 

0.666

 

0.798

 

10

 

0.632

 

0.765

 

11

 

0.602

 

0.735

 

12

 

0.576

 

0.708

 

13

 

0.553

 

0.684

 

14

 

0.532

 

0.661

 

15

 

0.514

 

0.641

 

16

 

0.497

 

0.623

 

17

 

0.482

 

0.606

 

18

 

0.468

 

0.590

 

19

 

0.456

 

0.575

 

20

 

0.444

 

0.561

 

25

 

0.396

 

0.505

 

30

 

0.361

 

0.463

 

35

 

0.335

 

0.430

 

40

 

0.312

 

0.402

 

45

 

0.294

 

0.378

 

50

 

0.279

 

0.361

 

60

 

0.254

 

0.330

 

70

 

0.236

 

0.305

 

80

 

0.220

 

0.286

 

90

 

0.207

 

0.269

 

100

 

0.196

 

0.256

 

n

 

α=0.05

 

α=0.01

 

 

 

The regression equation is

y= -141.0 + 40.0x

​(Round to one decimal place as​ needed.)

 

Part 2

 

The best predicted weight for an overhead width of

2.4 cm is ______ kg.

​(Round to one decimal place as​ needed.)

 

Part 3

 

Can the prediction be​ correct? What is wrong with predicting the weight in this​ case?

 

 

A.

The prediction cannot be correct because a negative weight does not make sense and because there is not sufficient evidence of a linear correlation.

 

B.

The prediction cannot be correct because a negative weight does not make sense. The width in this case is beyond the scope of the available sample data.

 

C.

The prediction cannot be correct because there is not sufficient evidence of a linear correlation. The width in this case is beyond the scope of the available sample data.

 

D.

The prediction can be correct. There is nothing wrong with predicting the weight in this case.

Answer & Explanation

Solved by verified expert
Answered by ConstableKangarooPerson5964 on coursehero.com

sectetur adipiscing elit.

secsectetur adipiscing elit. Nam lacinia pulvinar tor

sectetur adipisci

 

sectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie consequat,


 

CliffsNotes Logo

Unlock access to this and over
10,000 step-by-step explanations

Unlock Explanation

Have an account? Log In

<p><strong>sectetur adipiscing elit.</strong></p><p><strong>sec</strong>sectetur adipiscing elit. Nam lacinia pulvinar tor</p><p style="margin-left:0px;">sectetur adipisci</p><p> </p><p>sectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie consequat,</p><p><br/> </p>

Step-by-step explanation

sssectetursectetursectetur adipi
secsecsectsectetsect
secsecsectsectetsecte
secsecsectsectetusecte
secsecsectsectesecte
secsecsectsectetsect
secsecsectsectetsect
 secsecsectetur adsectetur adsectetur adipisc
sectetursectsectsectetsectetursectetu
sectsectsectetsectsectsect

 

sectetur adipiscing elit.
sectetur adipiscing elit. Nam lacinia p
sectetur adipiscing elit. Na
sectetur adipiscing elit. Nam lacini
sectetur adipiscing elit. Nam la
   
sectetur adipiscing elit. Nam lacinia pulvinar tortor nec faci
sectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis
   
sectetur adipiscingsectetur adipiscing e
   
 

 

sectetur adipiscing elit. Nam lacinia pulvinar tortor nec faci
 

sectetur adi
sectetur adi
sect
sectetur adipiscin

 

sectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque dapibus eff

 

 

sectetur ad

sectetur adipiscing elit. Nam
sectetur adipiscing elit. Nam
 

sectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentesque dapibus efficitur laoreet. Nam risus ante, dapibus a molestie consequa


 

Get unstuck with a CliffsNotes subscription

Example CliffsNotes Question and Answer
Unlock every step-by-step explanation, download literature note PDFs, plus more.Get Access

Related Q&A