Questions & AnswersLinear Algebra

 . 5. [HAND IN 12 marks] In the diagram below, the 2x2 shaded...

Question
Answered step-by-step
Asked by mike12gd on coursehero.com

 . 5. [HAND IN 12 marks] In the diagram below, the 2x2 shaded...

image.png

Image transcription text

5. [HAND IN 12 marks] In the diagram below, the 2x2 shaded square centred at the origin is bounded by the lines x = +1 and y = +1. Let T denote the linear transformation that maps the square on the left to the parallelogram at the right. T (a) Use the structure theorem for linear transformations to find the matrix of T. Check your work with a suitable point, e.g. x = [1, 1]....
image.png

Image transcription text

[b] Now write Tas a product of three transformations, firsta dilation D, second a horizontal shear S, and third a rotation R about the origin. Find matrices for each of the three transformations, and check that their product gives you the matrix of T. Now there are many ways to do this, both graphical and algebraic. Here's how we want you to do it. It's mostlya graphical argument The keyidea is to track the top of the box through the three steps. The point is that if you know where the top of the box is, you know everything because the image of the box is always a parallelogram centered at the origin. After the dilation the top of the box is still horizontal but it has a different length and a different height After the shear, the top of the box is still horizontal with the same length and height, but it's shifted horizontally. Finally, since the diagram tells you where it is after the rotation, you will be able to work out the angle of rotation, and then you can continue [working backwards] from there. That is, first find R, and then S, and then D. Show your work and on the template [next page] make an accurate drawing of the parallelogram after each stage D and S. ...
image.png

 

Answer & Explanation

Solved by verified expert
Answered by ProfessorMetalDugong25 on coursehero.com
<p>secte<span class="eqneditor-formula" data-value="x=\begin{bmatrix} 1 &amp; -1\\ -1 &amp; 1 \end{bmatrix}"><span class="katex"><span class="katex-mathml"></span><span class="katex-html"><span class="base"><span class="strut" style="height:.43056em;vertical-align:0em;"></span><span class="mord mathnormal">s</span><span class="mspace" style="margin-right:.2777777777777778em;"></span><span class="mrel">s</span><span class="mspace" style="margin-right:.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">s</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">s</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">sec</span><span class="mord">s</span></span></span></span><span class="vlist-s">sec</span></span><span class="vlist-r"><span class="vlist" style="height:.9500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:.5em;"></span><span class="arraycolsep" style="width:.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">sec</span><span class="mord">s</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">s</span></span></span></span><span class="vlist-s">sec</span></span><span class="vlist-r"><span class="vlist" style="height:.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">s</span></span></span></span></span></span></span></p><p>secte<span class="eqneditor-formula" data-value="T= \begin{bmatrix} 4 &amp; -4 \\ -4 &amp; 4 \end{bmatrix}"><span class="katex"><span class="katex-mathml"></span><span class="katex-html"><span class="base"><span class="strut" style="height:.68333em;vertical-align:0em;"></span><span class="mord mathnormal" style="margin-right:.13889em;">s</span><span class="mspace" style="margin-right:.2777777777777778em;"></span><span class="mrel">s</span><span class="mspace" style="margin-right:.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.40003em;vertical-align:-.95003em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">s</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">s</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">sec</span><span class="mord">s</span></span></span></span><span class="vlist-s">sec</span></span><span class="vlist-r"><span class="vlist" style="height:.9500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:.5em;"></span><span class="arraycolsep" style="width:.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">sec</span><span class="mord">s</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">s</span></span></span></span><span class="vlist-s">sec</span></span><span class="vlist-r"><span class="vlist" style="height:.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">s</span></span></span></span></span></span></span></p><p> </p><p>sectetur adipiscing elit. Nam lacin<br/>sectetur adipiscing elit. Nam<br/>sectetur adipiscing elit. Na</p>
CliffsNotes Logo

Unlock access to this and over
10,000 step-by-step explanations

Unlock Explanation

Have an account? Log In

Step-by-step explanation

<figure class="image"><img src="/qa/attachment/36937460/" alt="36937460"/></figure><figure class="image"><img src="/qa/attachment/36937474/" alt="36937474"/></figure><figure class="image"><img src="/qa/attachment/36937529/" alt="36937529"/></figure>sectetur adipiscing elit. Nam lacinia pulvinar tortor nec facilisis. Pellentes
3 attachments
Subscribe to unlock attachment
JPG
Subscribe to unlock attachment
JPG
Subscribe to unlock attachment
JPG

Get unstuck with a CliffsNotes subscription

Example CliffsNotes Question and Answer
Unlock every step-by-step explanation, download literature note PDFs, plus more.Get Access

Related Q&A