The organelle that releases quantities of energy to form ATP (adenosine triphosphate) is the mitochondrion (the plural form is mitochondria). Because mitochondria are involved in energy release and storage, they are called the “powerhouses of the cells.”
Green plant cells contain organelles known as chloroplasts, which function in the process of photosynthesis. Within chloroplasts, energy from the sun is absorbed and transformed into the energy of carbohydrate molecules. Plant cells specialized for photosynthesis contain large numbers of chloroplasts, which are green because the chlorophyll pigments within the chloroplasts are green. Leaves of a plant contain numerous chloroplasts. Plant cells not specializing in photosynthesis (for example, root cells) have few chloroplasts and are not green.
An organelle found in mature plant cells is a large, fluid-filled central vacuole. The vacuole may occupy more than 75 percent of the plant cell. In the vacuole, the plant stores nutrients as well as toxic wastes. Pressure within the growing vacuole may cause the cell to swell.
An organelle called the cytoskeleton is an interconnected system of fibers, threads, and interwoven molecules that give structure to the cell. The main components of the cytoskeleton are microtubules, microfilaments, and intermediate filaments. All are assembled from subunits of protein.
The centriole organelle is a cylinder-like structure that occurs in pairs. Centrioles function in cell division.
Many cells have specialized cytoskeletal structures called flagella and cilia. Flagellaare long, hairlike organelles that extend from the cell, permitting it to move. In prokaryotic cells, such as bacteria, the flagella rotate like the propeller of a motorboat. In eukaryotic cells, such as certain protozoa and sperm cells, the flagella whip about and propel the cell. Cilia are shorter and more numerous than flagella. In moving cells, the cilia wave in unison and move the cell forward. Paramecium is a well-known ciliated protozoan. Cilia are also found on the surface of several types of cells, such as those that line the human respiratory tract.
Nucleus
Prokaryotic cells lack a nucleus; the word prokaryotic means “primitive nucleus.” Eukaryotic cells, on the other hand, have a distinct nucleus.
The nucleus of eukaryotic cells is composed primarily of protein anddeoxyribonucleic acid, or DNA. The DNA is organized into linear units calledchromosomes, also known as chromatin when the linear units are not obvious. Functional segments of the chromosomes are referred to as genes. Approximately 100,000 genes are located in the nucleus of all human cells. Nuclear proteins belong to a class of proteins called histones. The chromosome is coiled around the histones.
The nuclear envelope, an outer membrane, surrounds the nucleus of a eukaryotic cell. The nuclear envelope is a double membrane, consisting of two lipid layers (similar to the plasma membrane). Pores in the nuclear envelope allow the internal nuclear environment to communicate with the cell cytoplasm.
Within the nucleus are two or more dense organelles referred to as nucleoli (the singular form is nucleolus). In nucleoli, submicroscopic particles known asribosomes are assembled before their passage out of the nucleus into the cytoplasm.
Although prokaryotic cells have no nucleus, they do have DNA. The DNA exists freely in the cytoplasm as a closed loop. It has no protein to support it and no membrane covering it. A bacterium typically has a single looped chromosome with about 4,000 genes.