The Hypothalamus and Pituitary Glands

The hypothalamus makes up the lower region of the diencephalon and lies just above the brain stem. The pituitary gland (hypophysis) is attached to the bottom of the hypothalamus by a slender stalk called the infundibulum. The pituitary gland consists of two major regions: the anterior pituitary gland (anterior lobe or adenohypophysis) and the posterior pituitary gland (posterior lobe or neurohypophysis).

The hypothalamus oversees many internal body conditions. It receives nervous stimuli from receptors throughout the body and monitors chemical and physical characteristics of the blood, including temperature; blood pressure; and nutrient, hormone, and water content. When deviations from homeostasis occur or when certain developmental changes are required, the hypothalamus stimulates cellular activity in various parts of the body by directing the release of hormones from the anterior and posterior pituitary glands. The hypothalamus communicates directives with these glands by one of the following two pathways:

  • Communication between the hypothalamus and the anterior pituitary occurs through chemicals (releasing hormones and inhibiting hormones) that are produced by the hypothalamus and delivered to the anterior pituitary through blood vessels in the infundibulum. The releasing and inhibiting hormones are produced by specialized neurons of the hypothalamus, called neurosecretory cells. The hormones are released into a capillary network (primary plexus) and transported through veins (hypophyseal portal veins) to a second capillary network (secondary plexus) that supplies the anterior pituitary. The primary plexus and the hypophyseal portal veins are in the infundibulum and the secondary plexus is in the anterior pituitary. The hormones then diffuse from the secondary plexus into the cells of the anterior pituitary, where they initiate the production of specific hormones by the anterior pituitary. The releasing and inhibiting hormones secreted by the hypothalamus and the hormones produced in response by the anterior pituitary are listed in Table 1. Many of the hormones produced by the anterior pituitary are tropic hormones (tropins), hormones that stimulate other endocrine glands to secrete their hormones.
  • Communication between the hypothalamus and the posterior pituitary occurs through neurosecretory cells that span the short distance between the hypothalamus and the posterior pituitary (through the infundibulum). Hormones produced by the cell bodies of the neurosecretory cells are packaged in vesicles and transported through the axon, and stored in the axon terminals that lie in the posterior pituitary. When the neurosecretory cells are stimulated, the action potential generated triggers the release of the stored hormones from the axon terminals to a capillary network within the posterior pituitary. Two hormones, oxytocin and antidiuretic hormone (ADH), are produced and released in this way. Their functions are summarized in Table 1.