Measurement Scales

Different measurement scales allow for different levels of exactness, depending upon the characteristics of the variables being measured. The four types of scales available in statistical analysis are

  • Nominal: A scale that measures data by name only. For example, religious affiliation (measured as Christian, Jewish, Muslim, and so forth), political affiliation (measured as Democratic, Republican, Libertarian, and so forth), or style of automobile (measured as sedan, sports car, SUV, and so forth).
  • Ordinal: A scale that measures by rank order only. Other than rough order, no precise measurement is possible. For example, medical condition (measured as satisfactory, fair, poor, guarded, serious, and critical); socioeconomic status (measured as lower class, lower‐middle class, middle class, upper‐middle class, upper class); or military officer rank (measured as lieutenant, captain, major, lieutenant colonel, colonel, general). Such rankings are not absolute but rather relative to each other: Major is higher than captain, but we cannot measure the exact difference in numerical terms. Is the difference between major and captain equal to the difference between colonel and general? We cannot say.
  • Interval: A scale that measures by using equal intervals. Here you can compare differences between pairs of values. The Fahrenheit temperature scale, measured in degrees, is an interval scale, as is the centigrade scale. The temperature difference between 50°C and 60°C (10 degrees) equals the temperature difference between 80°C and 90°C (10 degrees). Note that the 0 in each of these scales is arbitrarily placed, which makes the interval scale different from ratio.
  • Ratio: Similar to an interval scale, a ratio scale includes a 0 measurement that signifies the point at which the characteristic being measured vanishes (absolute zero). For example, income (measured in dollars, with 0 equal to no income at all), years of formal education, items sold, and so forth, are all ratio scales.